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Abstract A novel and portable strategy based on fluores-
cence polarization immunoassay (FPIA) using quantum dots
(QDs) was described in this study for simple, rapid, and
sensitive detection of carcinoembryonic antigen (CEA). Un-
der optimal conditions, the sensor has a wide dynamic range
(from 0.5 ng/mL to 200 ng/mL) and a good correlation. The
limit of detection (LOD) is 0.21 ng/mL (S/N03). The sensor
has been applied for detection of carcinoembryonic antigen
in 10 human serum samples with the range of recovery from
92.1 % to 103.6 %. Furthermore, bioconjugation of the
core–shell QDs with streptavidin (SA) has been successfully
applied in immunofluorescent imaging of the human hepa-
tocellular carcinoma (HEPG2) cell line. The experimental
results demonstrated the successful application of QDs-
based fluorescence polarization immunoassay for detection
of target proteins of biomedical importance. This strategy
shows great promise for clinical diagnoses and basic dis-
covery with high sensitivity, good specificity, simple proce-
dures and short analysis time.
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Introduction

Carcinoembryonic antigen (CEA) [1], a kind of glycopro-
tein with a molecular mass of about 200 kDa found in
colorectal carcinomas, is one of the most widely used tumor
markers responsible for clinical diagnosis of colorectal,
pancreatic, gastric, and cervical carcinomas [2, 3]. Thus, it
either can be part of a panel of cancer markers for different
cancers, more importantly; it also can be used as an inde-
pendent prognostic factor. The normal CEA levels in
healthy adults lie in the range 3–5 ng mL−1, although some
benign diseases can increase these levels up to 10 ng mL−1

[4–7]. When the CEA level is abnormally high before ther-
apy, it is expected to fall to normal, following successful
surgery or other treatment to remove the tumor. A rising
CEA level indicates progression or recurrence of the cancer.
In addition, levels of >20 ng mL−1 before therapy is com-
monly associated with cancer in the metastatic state [8, 9].

Several strategies have been developed for the detection
of this important marker in the past such as enzyme-linked
immunoassay [10], Raman Scattering based immunoassay
[11], amperometric immunoassay [12, 13] and fluoroimmu-
noassay [14]. These systems all need to separate the free
form and the complex of the antigen and the antibody, so
that the accuracy and sensitivity of the assay are generally
dependent on the quality of the separation, which is easily
affected by sample composition. Moreover, enzyme-linked
immunosorbent assay (ELISA) or other immunosorbent as-
say systems, in which antigen or antibodies are fixed on a
solid surface, commonly associated with the decrease of
protein bioactivity and the instability [10].

In the immunoassay method, fluorescence polarization
immunoassay (FPIA) is the most extensively used homo-
geneous technique, which meets the requirements of a
simple, reliable, fast and cost-effective analysis [15, 16].
FPIA method is based on the competition of free
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(unlabeled) analyte and fluorescent-labeled antigen for
antibody binding sites. Fluorescence emission is detected
after excitation of the fluorescent probes with the plane-
polarized light. The fluorescence polarization value is
indirectly proportional to the analyte concentration as
the analyte can bind to the high molecular weight
species-like antibody [17]. It does not require a separation
step to isolate antibody-bound label from unbound immu-
noreagent and is almost unique in this regard in small
molecule (hapten) immunoassays [18].

The development of luminescent colloidal semiconductor
nanocrystals referred to as quantum dots (QDs) [19] have
led to an explosive growth in research on these materials.
Compared to organic fluorophores, QDs exhibit more re-
markable brightness, photostability, and excellent biological
compatibility after appropriate surface-capping. Moreover,
the high emission amplitude for QDs leads to a significant
improvement in the signal to noise ratio of the final detected
signals. These advantages make QDs attractive for the in-
creased use of QDs as the fluorescent labels in immuno-
assays [20, 21]. Previous work has been done in our
laboratory to develop a fluorescence polarization immuno-
assay for detection of alpha fetoprotein in human serum, the
results indicates that QDs are attractive fluorescent probes in
fluorescence polarization immunoassay [22].

In this study, we report a portable quantum dot-based
fluorescence polarization immunoassay (FPIA) for sim-
ple, sensitive, and selective detection of carcinoem-
bryonic antigen (CEA) in human serum. The approach
developed in this work combines the advantage of the
FPIA with the high sensitivity and the stability of quan-
tum dot, which results in a novel, portable, and rapid
competitive immunoassay tool for sensitive and selective
detection of CEA.

Experimental

Materials

Thioglycolic acid (96 %), NaBH4 (96 %), Tellurium pow-
der (99.999 %) and CdCl2·2.5H2O (99 %), were obtained
from Shanghai Chemical Reagents Company (China).
1-ethyl-3(3-dimethy laminopropyl) carbodiimide hydro-
chloride (EDC) and N-hydroxysuccinimide (NHS) were
purchased from Sigma-Aldrich. Mouse anti-Rbbit IgG/bi-
otin and streptavidin (SA) were obtained from Beijing
Biosynthesis Biotechnology Co. (China). Monoclonal
anti-CEA and CEA(98 %) were purchased from Shuangliu
Zhenglong Laboratory of Biochemical Products (Chengdu,
China). All other reagents were of analytical reagent grade
and used without further purification. Ultrapure water with
18.2 MΩ cm−1 was used in our experiments.

Synthesis of CdTe QDs, CdTe/CdS QDs

Highly fluorescent CdTe QDs nanocrystals were made by a
procedure modified as reported [23]. Then the purify CdTe
core QDs were injected into the Cd2+–TGA precursor solu-
tion ([Cd2+]/[TGA] 01, pH09.00). The CdTe/CdS precursor
solution was put into a flask, and heated to 80 °C in argon
atmosphere and the thioacetamide (TAA) solution was
injected into the flask with continuous stirring. The CdTe/
CdS core–shell QDs(photoluminescence quantum yields
(PLQY)≈60 %, determined by the comparative method
[24]) were obtained after different refluxing times. All of
the nanocrystals were purified by acetone precipitation and
then dissolved in phosphate-buffered saline (PBS).

Preparation of Streptavidin-Conjugated QDs and CEA
Conjugation

The mixture EDC (5 μL, 0.056 M) and sulfo-NHS (5 μL,
0.1 M) were added to the QDs in PBS (pH 7.40) solution
and activated for 15 min. Activated QDs were mixed with
10μg mL-1 streptavidin (SA) and reacted for 4 h at room
temperature, the SA-conjugated QDs were separated from
the solution by an ultracentrifuge filter (MWCO050
000 Da). The resulting solution was then stored at 4 °C in
the dark for future use.

In addition, 8.4μg CEAwas added to the activated CdTe/
CdS QDs solution and kept at room temperature for 2–3 h.
After reaction at 4 °C overnight, an ultracentrifuge filter
(MWCO050 000 Da) was employed to purify the CEA-QDs.

Characterization of Streptavidin- QDs and CEA-QDs

For size-exclusion high-performance liquid chromatography
(HPLC), the mobile phase was 0.5 M PBS (pH 7.40), at a
flow rate of 0.5 mL min−1. The protein PAK 125 column
(7.8 mm×30 cm) was washed with PBS for 2 h, and then
15 μL samples were injected into gel separation column.
The major peaks were detected by waters 2487 UV detector
(Waters, USA) at 280 nm. Photoluminescence (PL) meas-
urements were performed at room temperature using a LS-
55 luminescence spectrometer (Perkin Elmer, USA) with the
excitation wavelength 370 nm. Fluorescence emission spec-
tra were collected at 480–680 nm range. The slit widths for
both monochromators were fixed at 8 nm.

Cell Imaging

As showed in Fig. 1, the human hepatocellular carcinoma
cells HepG2.2.15 were cultured on a circular cover slip in
Dulbecco’s Modified Eagle’s Medium (DMEM) with 10 %
(v/v) fetal bovine serum (FBS) overnight. The HepG2.2.15
cells were fixed with 4 % paraformaldehyde for 15 min, then
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washed with PBS three times, and blocked with 1 % bovine
serum albumin (BSA) in PBS for 2 h before loading the
primary antibody. The monoclonal anti-CEA was diluted in
PBS (1:200), and 100μL of the diluted monoclonal antibody
was added to each cover slip for further incubation at 4 °C
overnight. After washing the cover slips with PBS three times
for 5 min, 100μL of mouse anti-rabbit IgG antibody conju-
gated with biotin (1:200 dilution in PBS) was loaded onto
each cover slip and incubated at room temperature for 2 h. The
cover slips were washed with PBS three times for 5 min and
incubated in SA-CdTe/CdS QDs at room temperature for 1 h.
Then the cover slips were washed and were imaged at room
temperature. The fluorescence images of cells were obtained
with a Nikon inverted microscope (Nikon TE2000-S, Japan)
which was equipped with a high-definition CCD camera, a
100 W Hg excitation lamp and three filters (λex 350±20 nm,
λex 470±20 nm and λex 535±20 nm).

Fluorescence Polarization Immunoassay

Figure 2 shows the schematic diagram of the Fluorescence
polarization immunoassay procedure. Specific steps as fol-
lows: 700μL of CEA standard solutions, 700μL of purify
CEA-QD solution and 700 μL of the optimal dilution of
anti-CEA were added into a cuvette. The reaction mixture
was vortex-mixed, allowed to stand for 5 min, and then
measured in the fluorescence spectrophotometer. Serum
samples were carried out on a 50 000 MW size filter and
centrifugation at 3000g for 15 min at 4 °C to remove low
molecular weight protein (<50 000 Da). The upper phase
was decanted, dissolved in PBS and subjected additionally.

All experiments were carried out at 25 °C. The fluores-
cence polarization immunoassay was performed on an auto-
mated polarization model FL3-P-TCSPC(HORIBA JOBIN
YVON, France). The fluorescence intensity and fluorescence
polarization of the immunocomplex were monitored by excit-
ing the sample at 370 nm and measuring the emission at
580 nm. Fluorescence polarization was measured using the
L-format configuration, using FluorEssence™ software such

as constant wavelength analysis to achieve a polarization
value. The polarization value was also calculated automatical-
ly by the instrument. The integration time was set to 3 s for the
polarization measurements. Over six polarization measure-
ments were taken each time, and they were then averaged
for further data processing. The relative standard deviation
was 2 % for all measurements.

Results and Discussion

Synthesis and Biophysical Characterization of CEA-QDs

An excess amount of CEA was allowed to react with acti-
vated amino CdTe/CdS QDs 580. The formation of QDs
bioconjugates was confirmed by HPLC size exclusion chro-
matography (Fig. 3). Since the species with higher

Fig. 1 Schematic diagram of microscopic images of the cells

Fig. 2 Schematic diagram of the Fluorescence polarization
immunoassay
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molecular weights are eluted in shorter retention times, the
observed HPLC peaks at a retention time 14.48 min were
attributed to free CEA (Fig. 3a). After the conjugation to
CdTe/CdS QDs, the peaks can be seen at 12.24 min, which
was considered the signal of higher molecular weight, as
expected for the attachment of QDs to CEA (Fig. 3b).

To evaluate whether there was any difference in the photo-
luminescence (PL) spectrum of CdTe/CdS QDs 580 after con-
jugation to CEA, PLmeasurements of CdTe/CdSQDs 580were
performed by excitation with a 370 nm laser. From Fig. 4, water
soluble CdTe/CdS quantum dots synthesized by us have good
fluorescence properties of strong fluorescence and desirable
symmetry of peak. Furthermore, the spectrum of CEA-CdTe/
CdS QDs 580 is still symmetrical and almost identical to that of
QDs with only a slight red shift. The results demonstrated that
the optical properties of the CdTe/CdSQDs 580were not altered
after functionalization with the CEA.

Antibody Dilution Curve and CEA-QDs Concentration
for Fluorescence Polarization Immunoassay

As reptorted, the lower QDs580-labeled antigen concentra-
tion, which has no effect on the fluorescence signal, the

lower sensitivity will be obtained. In previous studies, the
lowest QDs580-labeled antigen concentration giving a sig-
nal should be approximately 10 times higher than the back-
ground signal from PBS (total fluorescence intensity) [17].
So, here, the amount of CEA-QDs580 was selected such
that the total final fluorescence intensity was 10 times higher

Fig. 3 HPLC elution curves for
a free CEA and b QDs580-
CEA. The retention times of
free CEA and QDs580-CEA
were about 14.48 min and
12.24 min, respectively. The
mobile phase was 0.5 M PBS
(pH 7.4), and the flow rate was
0.5 mL min−1
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Fig. 4 Fluorescence emission spectra of QDs580 and CEA-QDs580. c
(QDs580)025 μM; 0.5 M PBS (pH 7.4); 25 °C.
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than the background of PBS, and the concentration of CEA-
QDs580 was1.25×10−6 mol·L−1.

The anti-CEA was serially diluted 1/100, 1/200……1/
9600 in PBS. Then 1 mL of diluted antibody solution was
added to 1 mL of fixed amounts QDs580-labeled antigen in
PBS. The reaction mixture was vortex-mixed, allowed to
stand for 5 min, and then measured in the fluorescence
spectrophotometer. The obtained results are presented as
the curves with fluorescence polarization units plotted
against antibody dilutions, as showed in Fig. 5. Fluores-
cence polarization values resulting from QDs580-labeled
antigen binding with specific monoclonal anti-CEA anti-
bodies and with nonspecific anti-AFP were compared. It
can be seen in Fig. 5 that the specific monoclonal anti-
CEA antibodies gave significant binding with QDs580-

labeled antigen at higher concentration and slowly de-
creased in FP as anti-CEA antibodies became more diluted
by PBS. However, the QDs580-labeled antigen always had
similar FP values in spite of the change of nonspecific anti-
AFP concentration. The results indicate that the QDs580-
labeled antigen was successfully synthesized and could be
used as a competition agent in the FPIA. The dilution of
antibody corresponding to 50 % QDs580-labeled antigen
binding was chosen as the titer value because this dilution
may be optimal for FPIA standard curves [25, 26]. As
showed in Fig. 5 the dilution of antibody was 1/1800.

The Standard Curve for CEA Determination
in Fluorescence Polarization Immunoassay

Microcal Origin software was employed to plot and calcu-
late the analytical parameters of the immunoassays [IC50

values, slope, and standard deviations (SD)]. The standard
curve for CEA determination was plotted as relative current
values. The analyte concentrations and the polarization sig-
nal were fitted to a sigmoid curve according to the formula:

Y ¼ ðA1 � A2Þ=½1þ ðXX0
ÞP� þ A2 , where A1 and A2 are the

maximal and minimal polarization signals, P is the slope of
the sigmoid curve, and X0 expressed as IC50 value [17, 27].

As shown in Fig. 6, in the fixed concentration of anti-
CEA solution, labeled and unlabeled CEA is allowed to
simultaneously compete for the binding sites on the anti-
CEA. The concentration of labeled CEA was fixed, and the
concentration of unlabeled CEA was changed. When unla-
beled CEA antigen was added, the polarization signals were
obviously weaken with the increase in its concentration. The
values of A1 and A2 were 137.68, 52.26 respectively, and
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the X0 was 9.24 ng mL−1, R200.999. The concentration of
unlabeled CEA was varied from 0.01 ng mL−1 to
1.5 μg mL−1. The linear range of unlabeled CEA concen-
trations at calibration curves corresponds to the range from
0.5 ng mL−1 to 200 ng mL−1 with correlation coefficient
0.997. The limit of detection (LOD), which was determined
from calibration curve using the blank signal (that is defined
as an average from five mesurements of zero analyte dose
signal) and the three-fold confidence interval [28], was
0.21 ng ml−1. Each measurement for date points was repeat-
ed about six times.

Detection of Serum CEA Levels

The serum CEA levels in five normal human serum sam-
ples and five carcinoma patient’s serum samples were
detected by using the proposed QD580 immunosensor.
For analyses of practical samples, the interference and
fluorescence quenching by some serum samples should
be taken into account [22]. In this paper, the advanced
process of centrifugation with an ultracentrifuge filter
was performed to remove unrelated protein in the serum.
As showed in Table 1, the mean serum CEA concentrations
obtained by the proposed CEA immunosensor were agree
with the reference values, which were measured by the
standard ELISA [29]. The relative errors of the results
acquired by these methods were less than 3.5 %. The
recovery for CEA was from 92.1 to 103.6 % showed in
Table 2. Therefore, the fluorescence polarization immuno-
assay could be satisfactorily applied to the clinical deter-
mination of the CEA level in humans.

Cell Images

To determine the advantage of QDs580 in biomedical appli-
cation, we attempted the detection of CEA on the surface of
some hepatocellular cancer cells. As showed in Fig. 7, 7702
(human liver cells, CEA negative), and HepG2 (human

hepatocellular carcinoma cells, high CEA expression) cells
were blocked with 0.1 % bovine serum albumin, stained with
1 nM QD580-SA in the presence of Mouse anti-Rbbit IgG
antibody conjugated with biotin (1:200 dilution in PBS) and
examined under the microscope. The representative bright
field and fluorescence images are shown in Fig. 7.

It can be seen clearly that QD580-SA did not bind to CEA-
negative cells (7702, f), because there is a minimal fluores-
cence signal observed, whereas the CEA-positive cells
(HepG2, b, d) are clearly visualized.Moreover, control studies
using QD-SA (without antibody) showed nonspecific binding
to HepG2 (Fig. 7d), which bright fluorescence signal can be
seen in the whole nucleus of cells. Besides, in the design of the
immunofluorescent imaging of cells (Fig. 7b), the bright fluo-
rescence of QDs mainly appears in the cytoplasm of the cell.
There are many ways of intracellular delivery of QDs for live
cell labeling and organelle tracking [30], such as biochemical
methods (translocation peptides, cationic liposomes, den-
drimers) and physical methods (electroporation and microin-
jection) [31]. Generally speaking, there are two kinds of
mechanisms including non-specific entry by endocytosis
[32] and specific entry mediated by biomolecules attached to
QD surface [33–35]. The process for the QD-SA to enter
HepG2 cells might be endocytosis, where streptavidin can
facilitate the delivery of QDs into HepG2 cells, but it is
difficult for intact 7702 cells. For immunofluorescent imaging
of HepG2 cells, the streptavidin–biotin binding scheme was
employed to conjugate antibodies to the SA-coated core-shell
QDs because of their strong noncovalent affinities. One strep-
tavidin molecule can combine with four biotin molecules,
which induces the magnification of signals [36]. It can be seen
that the bright fluorescence of QDs mainly appears in the
cytoplasm of the cell. This indicates that the SA-QD is mainly
integrated with the CEA in the cytoplasm, which is in agree-
ment with the theory that CEA is expressed in the cytoplasm
of tumor cells [1, 37]. These results established that the anti-
CEA–QD conjugates retain their CEA binding activity and
specificity.

Table 1 Detection of CEA in
human serum

1–5 samples come from healthy
adults’ serum, 6–10 samples
come from lung cancer, uterine
cancer, hepatic carcino.ma,
breast cancer and gastric cancer
patient, respectively

Sample Content (ng mL−1) Mean value
(ng mL−1)

RSD(%) Reference value
(ng mL−1)

1 2.19, 2.13, 2.19, 2.05, 2.24 2.16 3.32 2.25

2 2.72, 2.65, 2.63, 2.59, 2.63 2.64 2.02 3.08

3 4.73, 4.70, 4.77, 4.62, 4.89 4.74 2.09 4.56

4 5.43, 5.39, 5.43, 5.56,5.30 5.42 1.75 5.21

5 1.55, 1.56, 1.52, 1.49,1.51 1.52 1.92 1.78

6 23.87, 23.68, 23.49, 24.26, 22.93 23.68 2.08 23.32

7 117.46,116.52,117.46, 19.37, 114.66 117.10 1.46 117.26

8 191.92,188.85,193.47, 88.85, 187.34 190.09 1.33 189.78

9 100.0,101.62,101.62, 98.40, 99.20 100.17 1.44 101.35

10 134.69,135.78,133.61, 132.54, 132.54 133.83 1.05 132.87
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Conclusions

In summary, QDs as a promising alternative reporter has
been successfully integrated with FPIA and developed for
rapid, sensitive, and one-step quantitative detection of car-
cinoembryonic antigen. This approach takes advantage of
high sensitivity and easy procedures of fluorescence polar-
ization immunoassay and photostability of QDs. Under op-
timal conditions, this proposed QDs-based FPIA have a
linear relationship in the range of 0.5 ng mL−1 to
200 ng mL−1 with a detection limit of 0.21 ng mL−1. Fur-
thermore, the cell images indicate that the SA-coated core-
shell QDs have a very good signal in a biotin–streptavidin
labeling system. Overall, the QDs-based FPIA, considered
as an advance in alternative immunoassay, has a great po-
tential for rapid, sensitive, and simple analysis of other
protein biomarkers in clinical diagnostics, basic discovery,
and a variety of other biomedical applications.

Table 2 The recovery of CEA in human serum samples

Sample Content
(ng mL−1)

Added
(ng mL−1)

Found
(ng mL−1)

Recovery
(%)

1 2.16 5 6.59 92.1

2 2.64 5 7.52 98.4

3 4.74 5 9.92 101.8

4 5.42 5 10.31 98.9

5 1.52 5 6.27 96.2

6 23.68 50 73.46 99.7

7 117.10 50 173.12 103.6

8 190.19 50 228.9 95.3

9 100.17 50 147.77 98.4

10 133.83 50 182.36 99.2

Fig. 7 Microscopic images of
the cells. a, b HePG2 cells,
which are CEA-positive, as
revealed by the presence of the
anti-CEA-Bio-SA-QDs 580 Ab
bioconjugate on the cell sur-
face. c, d Negative staining was
detected in HePG2 cells ex-
posed to SA-QDs580 in the
absence of anti-CEA. e, f Neg-
ative staining in 7702 cells that
lack CEA expression by the
presence of the anti-CEA-Bio-
SA-QDs580 Ab bioconjugate
on the cell surface as a control.
a, c, e bright field; b, d, f fluo-
rescence. All fluorescence
images were recorded at 20x
magnification using a Nikon
inverted microscope (Nikon
TE2000- S, Japan) which was
equipped with a high-definition
CCD camera, a 100 W Hg ex-
citation lamp and three filters
(λex 350±20 nm, λex 470±
20 nm and λex 535±20 nm)
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